

GAV-Forschungskolloquium 16./17.10.2023

AKTUELLER FORSCHUNGSSTAND RUNOFF:

"NEUBEWERTUNG VON METALLISCHEN DACH- UND FASSADENMATERIALIEN UNTER DAUERHAFTIGKEITS- UND UMWELTASPEKTEN"

Nasrin Haacke, Gino Ebell

Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin

www.bam.de

Eckdaten zum Forschungsvorhaben RUNOFF

 Titel: Neubewertung der Dauerhaftigkeit von Dach- und Fassadenmaterialien und des Eintrags von Schwermetallionen in die Umwelt hervorgerufen durch Runoff

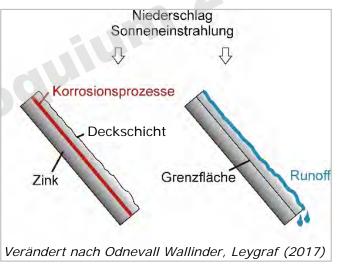
Förderinitiative:

• Fördermittelgeber:

 Bewilligungszeitraum: 01.09.2021 – 31.10.2023, verlängert bis 30.04.2024 Wussten Sie, dass...?

Runoff ≠ Runoff

S BAM


(Urbane) Hydrologie

(Urbaner) Runoff = Oberflächenabfluss v. Regenwasser

→ durch effektiven Niederschlag verursachter, und durch undurchlässige Oberflächen begünstigter, oft kontaminierter, städtischer Abfluss

Korrosionswissenschaft

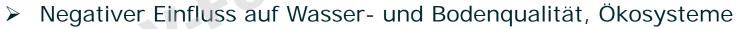
Runoff = Metallionenabschwemmprozess

→ durch korrosive atmosphärische Einflüsse verursachte Herauslösung von Deckschichtkomponenten

Motivation

 Baumaterialien haben einen erheblichen Einfluss auf das Erreichen der Nachhaltigkeitsziele (SDGs):

Nachhaltiges Bauen = Lange Lebensdauer/ hohe Dauerhaftigkeit


• Steigende Nachfrage nach umweltfreundlichen Bauprodukten

Nachfrage nach Methoden/Werkzeuge zur ökologischen Bewertung von Bauprodukten

24.03.2022 4

Hauptziele des Forschungsvorhabens

- 1) Besseres Verständnis von Einflussfaktoren auf den Runoff-Prozess
- II) Beschreibung des Einflusses von Runoff auf die Dauerhaftigkeit des Korrosionsschutzes (Dauerhaftigkeitsbetrachtungen)
- III) Quantifizierung des Eintrags von Schwermetallionen in die Umwelt
- IV) Ökologische Betrachtung zum Umwelteintrag
- V) Beschreibung eines Prüfverfahrens zur Bestimmung des Runoffs

17.10.2023 5

Projekt-Setup

- 1) Dauerhaftigkeitsbetrachtung
- 2) Ökologische Betrachtung

Feldversuche

- Elektrochemische
 Untersuchung der
 Deckschichtstabilität (LPR)
- Bestimmung der Korrosionsprodukte (XRD)
- 3) Runoff-Analysen

Laborversuche

- Konstruktion eines
 Niederschlagssimulators
- Untersuchung des Einflusses best. Faktoren (pH, Winkel, Intensität)
- Beschreibung (elektro-) chemischer Mechanismen

17.10.2023 6

BAM

Arbeitspakete

- **AP 1:** Probenauswahl und Probenpräparation
- AP 2: Konzeption, Fertigung und Aufstellung eines Messstandes für Runoff
- AP 3: Analyse von Wetterdaten, des Niederschlags und des Runoff-Wassers
- **AP 4:** Bewitterungsversuche im Feld zur Studie des Abschwemmverhaltens in Abhängigkeit der Bewitterungszeit
- AP 5: Modellversuche mittels Modellniederschlag im Labormaßstab
- **AP 6:** Berechnungen zum Eintrag von Ionen in die Umwelt und zum Beitrag des Runoffs zum Schichtdickenverlust von Materialien im Bauwesen
- AP 7: Synthese der Ergebnisse aus Labor- und Felduntersuchungen zur Einschätzung des Einflusses von Runoff im Bauwesen
- AP 8: Erstellung des Abschlussberichtes und Publikation der Ergebnisse an geeigneter Stelle

AP1: Probenauswahl und -präparation

Probenmaterial:

- Titanzink (Gemmel Metalle)
- Kupfer (Gemmel Metalle)
- Feuerverzinkt (Institut Feuerverzinken GmbH)
- Feuerverzinkte Tür (10 a alt Institut Feuerverzinken GmbH)

Zusätzliches Material:

- Voroxidiertes Kupfer (KME Germany GmbH)
- Vorpatiniertes Kupfer (KME Germany GmbH)
- Cu-Sn-legiertes Kupfer (KME Germany GmbH)
- Walzblankes Blei (zvdh)
- Vorpatiniertes Blei (zvdh)

AP2: Konzeption bis Aufstellung der Messstände

3 Versuchsstandorte:

städtisch (befahrene Straße), städtisch (Dach), ländlich

Jeweils ausgestattet mit:

3x A4-Kupfer

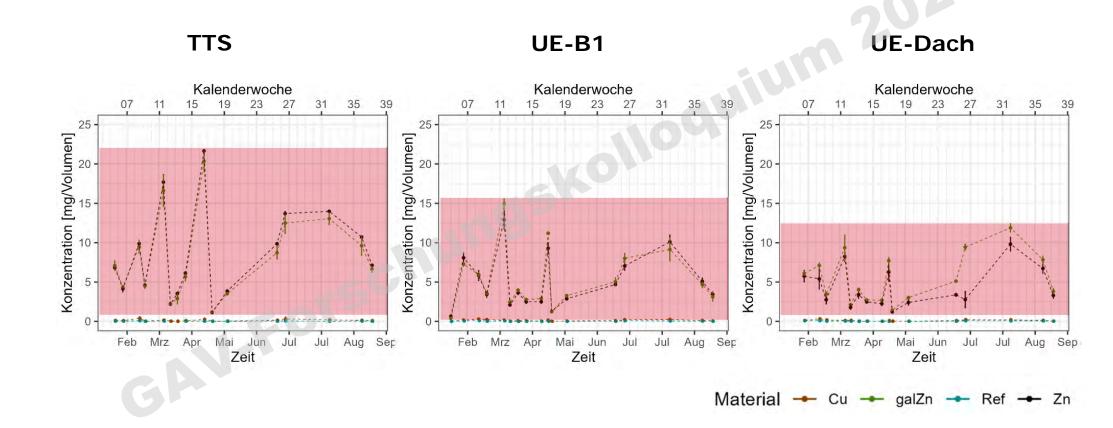
3x A4-Titanzink

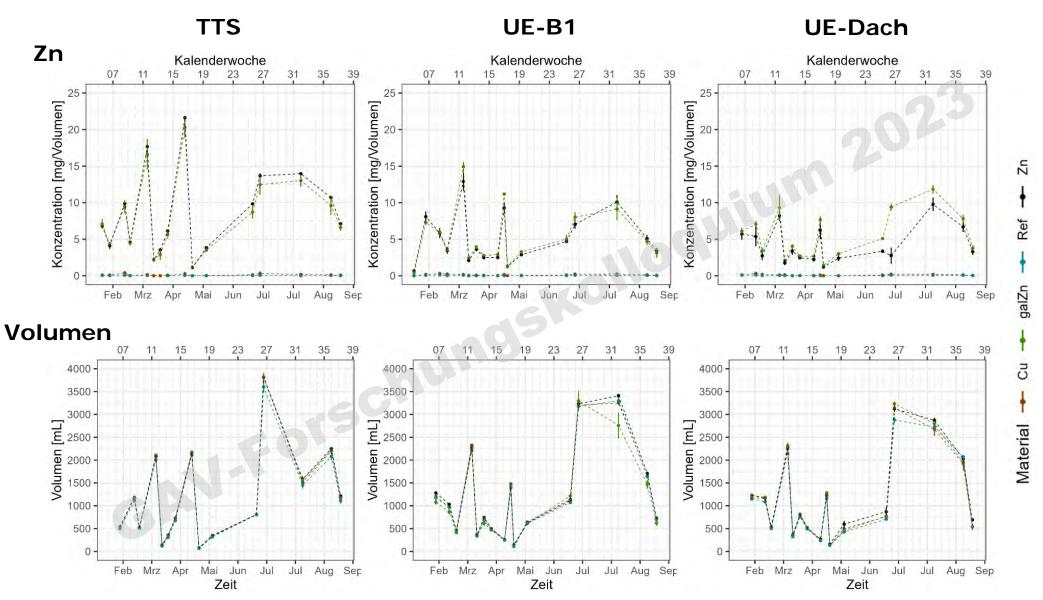
3x A4-Feuerverzinkt

3x A4-Plexiglas (Referenz)

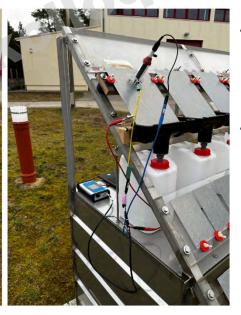
21x A5-Kupfer

21x A5-Titanzink


AP3: Analyse von Wetterdaten, des Niederschlagsund Runoff-Wassers

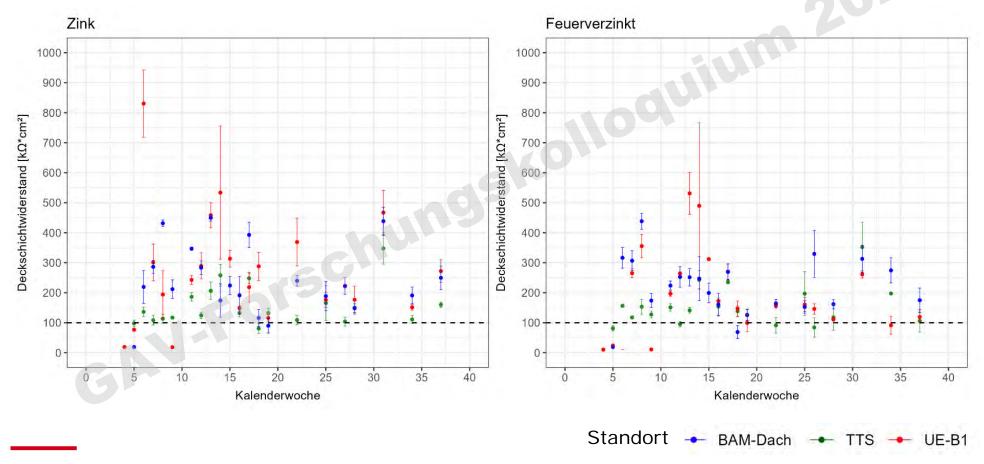

- Auswertung von Wetterdaten (Niederschlag, relative Luftfeuchtigkeit, Temperatur) zweier Wetterstation des DWD (10-min Auflösung)
 - Identifikation von Nass- und Trockenperioden sowie Anzahl Niederschlagsevents zzgl. Charakterisierung
- 2) Auffangen & Analyse des Niederschlagswassers an den Standorten Berlin und TTS-Horstwalde
 - Relevant für die Herstellung des künstlichen Niederschlagwasser

AP3: Analyse des Runoff-Wassers



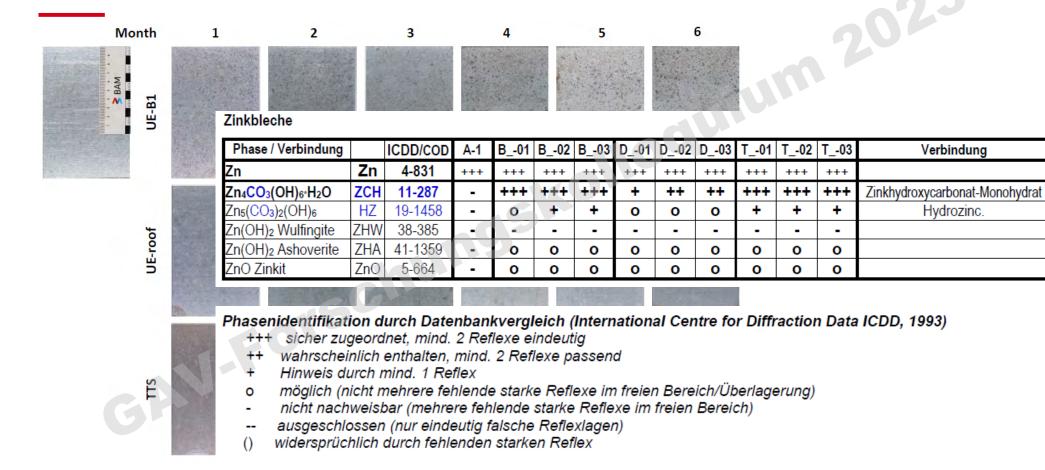
AP4: Bewitterungsversuche im Feld

- 1. Analyse Runoff-Wässer
- 2. Elektrochemische Untersuchungen der Deckschichtstabilität (LPR)
- 3. Bestimmung Korrosionsprodukte (XRD)

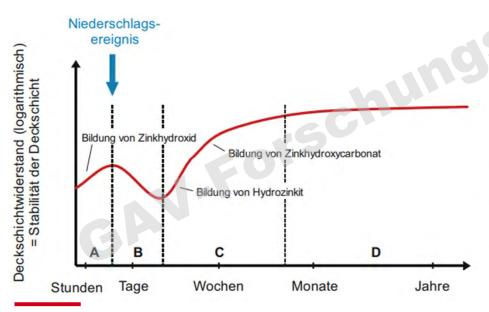


Auslagerungsbeginn: Ende Januar 2023

Auslagerungsende: Ende Januar 2024



AP4: Bestimmung der Korrosionsprodukte (XRD)



AP4: Bestimmung der Korrosionsprodukte (XRD)

Zinkbleche

Phase / Verbindung		ICDD/COD	A-1	B01	B02	B03	D01	D02	D03	T01	T02	T03	Verbindung
Zn	Zn	4-831	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	
Zn ₄ CO ₃ (OH) _{6*} H ₂ O	ZCH	11-287	•	+++	+++	+++	+	++	++	+++	+++	+++	Zinkhydroxycarbonat-Monohydrat
$Zn_5(CO_3)_2(OH)_6$	HZ	19-1458	•	0	+	+	0	0	0	+	+	+	Hydrozinc.
Zn(OH) ₂ Wulfingite	ZHW	38-385	•	•	-	•	•	-	•	٠	•	•	
Zn(OH) ₂ Ashoverite	ZHA	41-1359	•	0	0	0	0	0	0	0	0	0	
ZnO Zinkit	ZnO	5-664	•	0	0	0	0	0	0	0	0	0	

A Bildung einer nicht schützenden Zinkhydroxidschicht

B Umwandlung Deckschicht, Bildung sehr reaktiver Deckschichten

C Bildung schützender, carbonatdominierter Deckschichten

D Stabilisierung und Wachstum carbonatdominierter Deckschichten

(Babutzka, 2020)

Massenverluste (Mittelwerte) von Zink nach ein- und zweimonatiger Bewitterung an den Standorten 1 (BAM-Dach), 2 (UE-B1) und 3 (TTS) unter freier Bewitterung.

Bezeichnung	Bewitterungszeit (Monat)	Massenverlust [g/m²]	Massenverlust (ges) [g/m²]
BAM_01-03	1	2,380	-
BAM_04-06	2	0,240	2,620
Dach_01-03	1	1,013	-
Dach_04-06	2	0,107	1,120
TTS_01-03	1013	5,587	
TTS_04-06	2	0,366	5,953

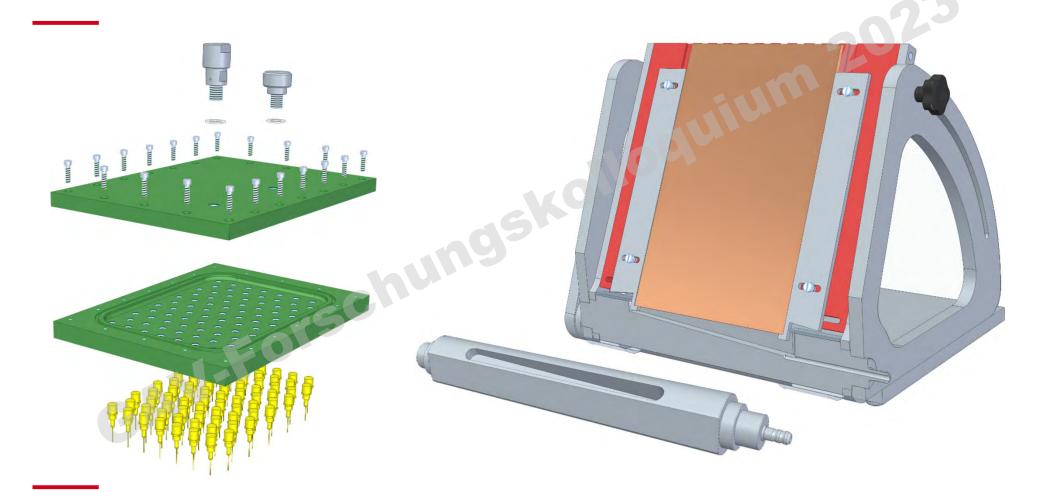
AP5: Laborversuche mittels Modellniederschlag

- Beliebtes Tool für die Untersuchung von Oberflächenabfluss, Infiltration, Bodenerosion
- 2 versch. Typen: Kapillarberegner und Düsenberegner
- Vorteil des Kapillarberegners: realistische Generierung der Tropfengrößen

AP5: Laborversuche mittels Modellniederschlag

BAM-designter Kapillarberegner:

- (1) Kapillar-Einheit
- (2) winkelverstellbarer Probenhalter
- (3) Runoffauffangsystem
- (4) Beregnergehäuse
- (5) Niederschlagsauffangbehälter mit Ablasshahn
- (6) Eurobehälter
- (7) Zentriertisch
- (8) Pumpe
- (9) künstlisches Niederschlagswasser
- (10) Runoff-Wasserbehälter


Zu testende Parameter:

pH, Intensität, Winkel

AP5: Versuchsaufbau

Material	рН	Neigung	Intensität
Zink*	4.5	20°	5 mm
FV	5.5	45°	10 mm
Kupfer*	6.5	60°	20 mm

Zusammensetzung des künstlichen Niederschlags

SO₄²⁻ (mg L ⁻¹)	CI- (mg L-1)	NO ₃ - (mg L-1)	NH ₄ + (mg L ⁻¹)	Na ⁺ (mg L ⁻¹)	K + (mg L ⁻¹)	Mg ²⁺ (mg L ⁻¹)	Ca ²⁺ (mg L ⁻¹)	рН
1.20	1.53	1.00	0.60	0.20	0.63	0.30	0.20	4.5 – 6.5

17.10.2023 21

^{*} Auch bewitterte Variationen

AP5: Versuchsplan via Design Expert

"Design Expert bietet computergenerierte D-optimale Designs."

→ Unterstützung bei der Erstellung eines Versuchsplans sowie bei der Interpretation von multifaktoriellen Experimenten

- Analyse von Einflussfaktoren und Faktor-Kombinationen
- Zeitreihenanalyse aller Faktor-Kombinationen

	Std	Run	Factor 1 A:pH	Factor 2 B:slope	Factor 3 C:Intensity mm	Response 1 Conc5 mg/L	Response 2 Conc10 mg/L	Response 3 Conc30 mg/L	Response 4 Conc60 mg/L
ſ	21	1	6,5	20	20				
	9	2	6,5	60	5				
	19	3	4,5	20	20				
	17	4	5,5	60	10				
	1	5	4,5	20	5				
	2	6	5,5	20	5				
	7	7	4,5	60	5				
	14	8	5,5	45	10				
	22	9	4,5	45	20				
	18	10	6,5	60	10				
	24	11	6,5	45	20				
	5	12	5,5	45	5				
	8	13	5,5	60	5				
	15	14	6,5	45	10				
	6	15	6,5	45	5				
	12	16	6,5	20	10				
	11	17	5,5	20	10				
	3	18	6,5	20	5				
	4	19	4,5	45	5				
	13	20	4,5	45	10				
	16	21	4,5	60	10				
	25	22	4,5	60	20				
	20	23	5,5	20	20				
	23	24	5,5	45	20				
	27	25	6,5	60	20				
	26	26	5,5	60	20				
	10	27	4,5	20	10				

AP5: Vorbewitterung von Zinkblechen

Bewitterungszeit:

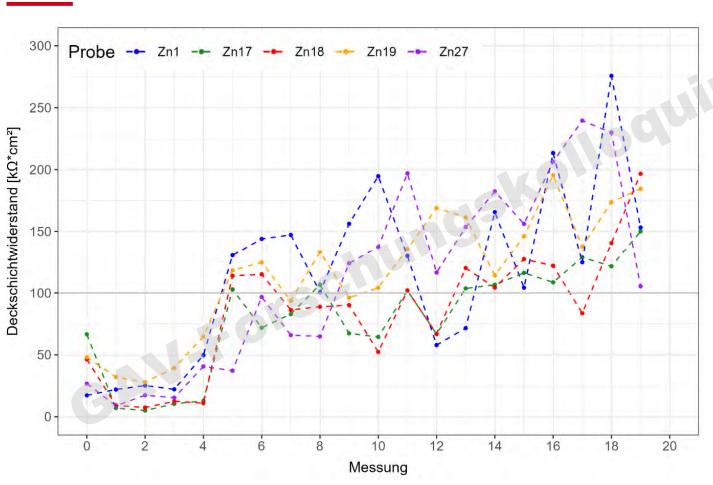
2 Monate

Bewitterungsrhythmus:

- Klimakammer: 3d5h (30°C, 25/90% rF)

- Messung/Benetzung: 1d

- Klimakammer: 2d3h (30°C, 25/90% rF)


- Messung/Benetzung: 1d

AP5: Künstliche Bewitterung von Zinkblechen

Ausblick

- **AP 1:** Probenauswahl und Probenpräparation
- AP 2: Konzeption, Fertigung und Aufstellung eines Messstandes für Runoff
- AP 3: Analyse von Wetterdaten, des Niederschlags und des Runoff-Wassers
- **AP 4:** Bewitterungsversuche im Feld zur Studie des Abschwemmverhaltens in Abhängigkeit der Bewitterungszeit
- AP 5: Modellversuche mittels Modellniederschlag im Labormaßstab
- **AP 6:** Berechnungen zum Eintrag von Ionen in die Umwelt und zum Beitrag des Runoffs zum Schichtdickenverlust von Materialien im Bauwesen
- AP 7: Synthese der Ergebnisse aus Labor- und Felduntersuchungen zur Einschätzung des Einflusses von Runoff im Bauwesen
- AP 8: Erstellung des Abschlussberichtes und Publikation der Ergebnisse an geeigneter Stelle

17.10.2023 25

Kontaktinformationen

Dr.-Ing. Nasrin Haacke

T: + 49 30 8104-4164

nasrin.haacke@bam.de

Gino Ebell, M.Eng.

T: +49 30 8104-4353

gino.ebell@bam.de

Bundesanstalt für Materialforschung und –prüfung (BAM) Fachbereich 7.6 Korrosion und Korrosionsschutz Unter den Eichen 87 12205 Berlin

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT

GAV-Forschungskolloquium 16./17.10.2023

www.bam.de